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Summary. An algorithm for the solution of the Schr6dinger equation in a 
discrete basis is illustrated with reference to the problem of quantization on 
spheres of any dimension (hyperquantization). It exploits the explicit construc- 
tion of discrete analogs of spherical harmonics and leads to sparse matrix 
representations of the kinetic energy operator and a diagonal representation of 
the interaction potential. Applications are discussed for inelastic and reactive 
scattering. 
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1. Introduction 

In the applications of quantum mechanics, the solutions of the Schr6cdnger 
equation are often sought by expanding the unknown eigenfunctions in some 
bases, so to obtain an algebraic problem. Convergence of the procedure (or in 
computational terms over-all structure and dimensions of the required matrices 
to be stored and manipulated) is the main practical limitation. Physical motiva- 
tions in the choice of bases are typically crucial in tackling problems, where exact 
simplifications (as those due to symmetries or conservation rules) are to be 
exploited to their best. 

The technique here described belongs to the class of direct approaches to the 
solution of the Schr6dinger equation by finite differences. It is illustrated with 
reference to eigenvalue problems as are encountered in a number of contexts, 
particularly for propagation techniques in the time-independent approach to 
inelastic and reactive scattering. Its use in variational or time-dependent ap- 
proaches has to be assessed. It differs from other finite difference schemes, such 
as the discrete variable representations (DVR) [1], from being founded on the 
exploit of discrete analogs of orthonormal bases usually defined on continuous 
variables. These bases are orthonormal polynomial sets, and our representation 
requires the discrete counterparts of orthogonal polynomials, i.e. polynomials 
orthogonal on lattice points. The important advantage is that the procedure can 
be extended to any number of mathematical dimensions. We specialize the 
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following presentation to the fundamental case of spherical (or hyperspherical, 
see below) harmonics. Since the harmonics [2] are representations of rotation 
groups they enjoy the property of being easily adapted to be eigenfunctions of 
symmetry operators and of any other basic property coming from conservation 
of angular momentum. So in a sense we will tackle the quantum mechanics of 
anisotropic interactions, where anisotropy may be in spaces of dimensions higher 
than physical, so that also many-body problems will be treated. 

From the mathematical viewpoint, harmonics belong to the class of Jacobi 
polynomials, which are functions of the hypergeometric, 2F~, family. Their 
discrete analogs belong to higher hypergeometric families: in our applications, 
we will use Hahn polynomials, 3F2 hypergeometric functions of unit arguments. 
The latter discrete polynomials can be identified, in particular cases, with the 
Clebsch-Gordan or vector coupling coefficients in the quantum theory of 
angular momentum. This fact provided the first motivations [3] of our work and 
leads to a physical picture of the technique, whereby the discretization is 
interpreted as a quantization of an artificial angular momentum: The following 
Sect. 2 elaborates on this aspect, which together with previous considerations on 
mathematical features leads to the natural definition of this procedure as the 
hyperquantization algorithm (Sect. 3). 

Section 4 considers the representation of interaction potentials in the discrete 
basis and Sect. 5 deals with the treatment of angular momentum exchange 
between a particle and a rotor, a basic model of atom molecule complexes and 
of rotational energy transfer in atom molecule collisions [4]. The handling of 
matrix elements is outlined in Sect. 6 and the structure of the interaction matrix 
is presented in Sect. 7. The extension to many-body problems is briefly illustrated 
(Sect. 8) with reference to the hyperspherical approach to bound states and 
rearrangement processes, for which the discrete analogs of hyperspherical 
harmonics have to be introduced. The paper concludes with some remarks in 
Sect. 9. 

2. Hyperquantization: The physical background 

In the quantum mechanical treatment of anisotropic interactions, coupling 
among channels typically appears as matrix elements involving sums over vector 
coupling and recoupling coefficients, and the formalism may become very 
complicated even in the simplest physical situations: however, "the complexity is 
to a certain extent of our own making" [5]. The introduction by Jacob and Wick 
of the helicity formalism [6] is just an example of simplifications which can be 
obtained by developing alternative reference frames. In quantum mechanics, 
alternative frames correspond to alternative coupling schemes: when it is possible 
to formulate the coupling in terms of quantum numbers which correspond 
to approximate constants of the motion, powerful approximations can be 
developed. 

The idea is actually as old as quantum mechanics: it can be traced back to 
1927, when Hund introduced alternative coupling schemes for diatomic 
molecules carrying spin and electronic and rotation angular momenta. The 
correspondence between Hund's cases and the possible angular momentum 
coupling schemes, at a given total angular momentum and spin has been treated 
in detail recently [7]. The relationship between this approach and frame transfor- 
mation theory [8] is also apparent. The purpose of the present paper is to 
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indicate how for general anisotropic interactions it is often possible to undo 
some expressions of Racah's algebra introducing discretization procedures, 
which amount to develop for multichannel Schrrdinger's differential equation 
alternative coupling schemes labelled by artificial quantum numbers. 

This work has some formal relationships with a discretization procedure 
extensively developed [ 1] to treat a large class of problems, including rotational 
excitation in atom-molecule collisions, and photodissociation of triatomic 
molecules. In the following, we show that a set of discretization schemes can be 
developed within the framework of angular momentum algebra introducing an 
artificial vector, say a, of length [a(a + 1)] m. We establish a correspondence 
a = N / 2  between this vector and the discretization of space into N + 1 slices 
(hyperquantization). The use of nonphysical quantum numbers N/2  and their 
projections v provides an attractive computational procedure, convergence to 
exact results being achieved in the limit of large N. With respect to previous 
discretization procedures, based on inversions of quadrature formulas [1], the 
developments presented here, being founded on the theory of group representa- 
tions, have the advantage of allowing the easy introduction into the formalism of 
sharp spin and angular momentum states and of any symmetry which is 
characteristic of a given problem (parity, permutations of identical parti- 
cles . . . .  ). Moreover, it appears to be well suited for implementation in the 
hyperspherical approach to many-body problems, as outlined in Sect. 8. The 
construction of a discrete representation of Schrrdinger equation is considered in 
the next section. The discrete analogs of the harmonics, the basic tool for our 
developments, will be given explicitly. 

In order to elucidate the physical picture which is behind the mathematics, 
we will exploit the fact that vector coupling and recoupling coefficients are the 
discrete analogs of orthogonal polynomials: this has been known for several 
years [9], and is being actively investigated from a formal point of view [10]. 
Physically, some of these relationships were in part to be anticipated by the 
knowledge that for high angular momenta the coefficients tend to particular 
cases of Jacobi polynomials (Wigner rotations matrices, spherical harmonics, 
Legendre polynomials) [ 11]. By explicitly identifying a vector coupling coefficient 
as the discrete Gram [ 12]- Chebishev [13] polynomial used in numerical analysis, 
we suggest in this work that the proposed discretizations have a further appeal- 
ing feature, namely that of providing an interpretation in terms of least square 
approximations. 

3. Hyperquantization on the sphere S" 

The solution of the time-independent Schr6dinger equation is often searched 
starting by an expansion basis for the unknown wavefunction in a set of 
eigenfunctions for a simpler solvable problem that bears some relationship with 
the problem at hand. One generally obtains coupled equations whose practical 
solution strongly depends on the choice of the basis. The following procedure 
may work for any choice of the basis for whose elements we know a discrete 
representation, in the sense to be explained below. However we will focus on the 
solution of the Schr6dinger equation on the surface of a sphere of any dimension 
(this is actually a fundamental problem frequently encountered in the applica- 
tions): for this problem, we know the eigenfunctions of the kinetic energy part of 
the Hamiltonian [2] (basically the spherical harmonics which solve the corre- 
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sponding Laplace equation); also, they enjoy the remarkable property that their 
discrete analogs can be obtained explicitly in a convenient algebraic formulation. 

The Schr6dinger equation for the quantization of a particle of mass m 
moving on the surface of an n-dimensional sphere S n can be written 

[ - -2~  A2(On)--Siq- V(On)]~[li(On)'~-0 (1) 

where On is a collection of n angles parametrizing the surface of the sphere, V is 
the potential energy, and ~,- is the eigenvalue of the state i. The Laplacian 
operator A 2 has as known eigenfunctions the spherical harmonics Yk: 

AZYk(On) = --2(2 + n -- 1)Yk(O,) 

where 2 = 0, 1 , . . . ,  oo and the suffix k denotes the 2 and the other n - 1 labels 
of the harmonics. In the example given in the next section, the space is the 
physically three-dimensional one, so we have the Laplacian acting on S 2, and ,~ 
is the physical orbital angular momentum. In general, we will also be interested 
in higher spaces [23]: for example, for the three body problem the Laplacian acts 
on S 5, and 2 is the grand orbital angular momentum [14]. Often, the potential 
function V acts on a manifold of lower dimensionality than O n. 

The spherical harmonics enjoy orthonormal properties: in particular they are 
orthonormal with respect to integration on the sphere: 

f Y~ Yz dO,, = 6kk, (2) 
n 

the star denoting complex conjugation. 
Therefore they can be used to expand the total wavefunction: 

7"i (~.)  = ~ g~, Y~(o.) (3) 
k 

To exploit symmetries for the problems at hand it may be convenient to take 
particular linear combinations of harmonics, the most important case being to 
combine them to be eigenfunctions of total angular momentum. Although 
frequently physical requirements may justify a truncation of Eq. (3) to include 
only a finite number of harmonics, in general Eq. (3) has infinite terms and its 
convergence properties may be extremely poor. 

Equations (3) in (1) transforms a partial differential equation into an 
algebraic eigenvalue problem: 

2(2 + n - 1) - e, g,, + ~ Vkzgik: = 0 (4) 
/ (  

The matrix elements: 

Vkk, = ~ Yk(f2,)V(On)Yk'(On) dO,, (5) 
d ~  n 

are sometimes evaluated by expanding in harmonics the potential itself: 

V(a~) = ~ V~Yi(O.) (6) 
i 

thus allowing to evaluate Eq. (5) as an integral over three spherical harmonics 
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for the sphere Sn: such an integration can be performed analytically exploiting 
the Clebsch-Gordan series for the rotation group SO(n). 

The physical problem, i.e. essentially the nature of the function V(On), may 
suggest alternative representations for formulating the algebraic equation of Eq. 
(4): any orthogonal transformation of the harmonics leaves obviously the 
eigenergies invariant. Examples of transformations related to the choice of 
alternative coordinate frames and coupling schemes will be explicitly considered 
in the following. In the formulation of the three body problem in hyperspherical 
coordinates, the orthogonal transformation between the so called symmetrical 
and unsymmetrical representations has also been given explicitly [15, 2]. It is 
remarkable that often such orthogonal transformations, since they physically 
provide the connection between alternative vector coupling schemes, are mathe- 
matically represented by rotation matrices, Clebsch-Gordan and Racah co- 
efficients, etc., i.e. the basic tools of angular momentum algebra. 

The key step of the present problem is the realization that angular momen- 
tum algebra can also provide a discrete representation for the harmonics Yk((2,). 
We assume (and prove in the next section) that there exists a set of functions Y~ 
where the set of numbers M counts in how many elements the surface of the 
sphere has been divided, and # is a set of labels for such elements; this establishes 
a one-to-one connection between # and a set of points on the sphere, •u. The 
relationship between the finite denumerable set of harmonics (taken at the 
discrete values #) and the infinite denumerable set of harmonics (which are 
continuous functions of angles ~2,) is: 

Y~  = Yk(O~.), for M ~ 0o (7) 

the discrete analogue of the orthonormal property Eq. (2) being: 

Y r L  = a,k, (8) 
# 

Instead of the infinite dimensional eigenvalue problem Eq. (4) we now have 
to solve: 

2 ~  ,~(~ - _ = 
+ n  1) ei gM + V~,g~i 0 (9) 

where the matrix elements are obtained by: 

v ,=Z rg*vyrL (10) 
/t 

using the values V M the potential V(g2n) which attains at the values given by the 
correspondence between # and O, ~, V M = V(~2,~). 

Equation (9) provides a finite basis representation for the problem and the 
larger M the more faithful the discrete set of eigenfunctions g i  and the 
eigenvalues ~i will approximate those from Eq. (4). To solve Eq. (9), it is 
however decisive to consider an alternative representation (a discrete variable 
representation, according to Light's nomenclature [ 1]) performing an orthogonal 
basis transformation exploiting orthonormal properties of discretized harmonics 
(see, e.g., Eq. (8)): 

g M = Z  M M  
# 
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to obtain: 

h 2 
V~, )(u; 0 (12) 2m S'~ ~t M M M 

p'  

where the coupling has been transferred from potential to kinetic energy and the 
corresponding matrix elements are algebraic quantities that can be computed 
independently of the problem at hand: 

M _ A ~u' - ~ M *  Yku 2(2 + n - 1)Y~, (13) 

and the potential is now diagonal. We recall that the set of labels k includes 2. 
The next sections provide the effective construction of the discrete harmonics 

and explicit examples of the application of this approach. 

4. Potential expansions in discrete harmonics 

Consider then a general interaction potential V(R, f2n) depending on a radius R 
and a set of angles f2 n [16]. The standard procedure requires the attack to the 
problem by first integrating over the angular variables f2,, and that is (often but 
not always) achieved by harmonic expansion of the interaction (see Eq. (6)), 
followed by computation of matrix elements. The harmonics must also be 
linearly combined to be eigenfunctions of total angular momentum, and of any 
other symmetry operators of the problem. By handling these matrix elements by 
orthogonal basis transformations one may obtain alternative formulations corre- 
sponding to alternative coordinate frames and coupling schemes. 

The present algorithm, being a finite difference scheme as any discrete 
variable representation, eventually avoids all this and leads to the simplification 
that no matrix elements of the potential need be calculated (see, however, Sect. 
6). Nonetheless, it is illuminating to illustrate the mathematical aspects of the 
procedure by the simplest example, that of the interaction between a rigid rotor 
and a structureless particle: this is the familiar model for the transfer between 
translational and rotational energy in the collisions of electrons or atoms with 
diatomic molecules [17, 4]. In this case, the interaction V(R, O) depends only on 
the length R of the vector R which joins the particle and the rotor center of mass, 
and the angle 0 which R forms with the rotor axis: Figure 1 shows relevant 
features of this problem. 

Often, the interaction is expanded in Legendre polynomials: 

V(R, O) = ~ vt(R)el(cos O) (14) 
l 

where vl(R) is obtained by integration: 

vt(R) = (l + 1/2) .jl ~ Pt(cos O)V(R, O) sin 0 dO (15) 

Suppose now that the integration in Eq. (15) is done by a quadrature 
procedure, which needs only that V(R, O) is taken at some discrete values of the 
angles 0v, with the suffix v to be specified. Further, consider that a relationship 
ties Legendre polynomials and particular vector coupling coefficients with large 
angular momenta [ 11, 18]: specifically, as the integer N tends to infinity, we have, 
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Fig. la-e. a and b illustrate the definitions of Jacobi vectors and angular momenta for the atom A 
interacting with the molecule BC. The rotational and orbital angular momentaj and ! are associated 
to the r and R vectors, respectively; and their sum is indicated as J in the text. Projections (Q, A) of 
j on R and of I on r are also shown, e illustrates the discretization in N slices (conveniently taken to 
be even) of the angular range 0 ~< 0 ~< g, where 0 is the angle between the Jacobi vectors. The label 
v, which plays the role of a projection quantum number, varies in the range from -N/2 to N/2 

as an approx ima t ion  for  l much  smaller than  N: 

U'2 I/N N Pt(cos  0) - ~ [ ( N +  1 ) / ( 2 / +  1)]1/2(-)  / - ~ -  ~ - ~ -  v - v  10 /  (16) 

where (Fig. 1): 

cos 0~ = -2v/N (17) 

and  v assumes the N + 1 values -N/2, -N/2 + 1 . . . . .  N/2 - 1, N/2. 
Therefore  an approx ima t ion  to Eq. (15) is: 

N/2-v-+/NN I I \ ~ . , -  v~(R)~--[(2I+I)(N+I)/N2]]/2Z(-- ) ~wsv - - v  lO VN(R, Ov)(18) 
v 

where the index N denotes  that  N ÷ 1 quadra tu re  points  have been considered. 
But this can be inverted, by using the o r thogona l  propert ies  o f  vector  coupling 
coefficients, to give an approx ima t ion  to Eq. (14): 

N'2 t/NN_ ) VN(R, Or) =[NZ/(2l+ 1 ) ( U +  1)] l /Z~ ( - )  / - ~ -  ~ 2 ~ v  - v  10 vU(R)(19) 

We have therefore found a discrete representat ion for  the interaction,  by 
introducing a m o c k  q u a n t u m  n u m b e r  N/2 and its project ion v, which we know 
tend to exactness as N is allowed to tend to infinity. No te  tha t  Eqs. (14) and (15) 
are fully consistent with Eqs. (18) and  (19) th rough  Eqs. (16) and (17) only when 
N is so large that  1 and 2 can be neglected. 

An  appeal ing feature o f  this discretization procedure  is that  it involves vector  
coupling coefficients, and therefore the discretization can be interpreted as the 
in t roduct ion  o f  the artificial vector  a o f  Sect. 2. But wha t  is more ,  is tha t  a 
striking relat ionship exists between the vector  coupl ing coefficients in Eqs. (16), 
(18), and (19) and the G r a m  [ 1 2 ] - C h e b y s h e v  [13] polynomials ,  o r thogona l  in a 
discrete range, and used in numerical  analysis for  the best representat ion in the 
least square sense of  functions tabula ted  for  equally spaced grid points.  This is 
apparen t ly  a par t icular  case o f  more  general relat ionships [10]. Equa t ion  (19) 
will be needed in Sect. 6. 
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5. The hyperquantization representation for atom-molecule collisions 

Equation (16) is only the simplest instance of discretization of rotation matrix 
elements and spherical harmonics by introducing arbitrarily large quantum 
numbers. All these well-known formulas [18, 11] are usually (as in Ref. [7]) 
employed in the semiclassical limit. In the modern language, which identifies 3j 
and 6j symbols with 3F2 and 4F3 of unit argument, respectively, they correspond 
to limit relationships among these hypergeometric functions and the ordinary 
2F1, which include all the classical orthogonal polynomials. Finally, they can also 
be obtained as the finite difference solutions of Laplace equation. For the 
following example, we use a generalization of Eq. (16 ) to  include a special 
spherical harmonic: for N tending to infinity, we have, for l much smaller than 
N and m >/0: 

,~w2 v , /NN_ I ) Y,m(0v, 0) "~ [(N + 1)14rc]'/2(-) - - \ - ~ - ~ + m v  - v  lO (20) 

and v is still given by Eq. (17). This equation is useful for computing matrix 
elements, but more importantly, indicates explicitly how alternative coupling 
schemes can be devised. For the present problem (the particle-rotor A ÷ BC case 
of Fig. 1), the Schrrdinger equation in a body-fixed frame, at a given total 
angular momentum J and parity e, can be written [4]: 

+ E 1 - WJ~(R) F(R) = 0 (21) 

where the total interaction matrix is the sum of three terms: 
h 2 

- -  - -  12 + V ( R )  (22) WJ~(R) = -BJ2 21~R2 

In these equations, # is the reduced mass of the system A ÷ BC, E the total 
energy, Oj 2 the diagonal matrix of the rotor energy levels. Equation (21) has to 
be solved for the radial functions Fj. a under proper boundary conditions: it is an 
infinite set, which in practice has to be truncated to include only selected values 
of the rotor angular momentumj and its projection f2 along R (Fig. 1). Coupling 
(see next section and Fig. 2) is due to centrifugal matrix 12, which is tridiagonal 
in this representation, being nonzero for f2' = f2 - 1, f2, f2 + 1, and to the matrix 
of the interaction V(R) which is diagonal in f2, but couples states with different 
j: its elements are given by: 

(jr2 Ij'f2) = 2~z jl = Y~(O, O)V(R, 0)Yla(0, 0) sin 0 dO (23) 

Use of Eq. (20) allows us to write the following discrete alternative to Eq. (23), 
valid for N much larger than j and j': 

(jr? I v l j 'o  > ~- ~ VU(R, Or)(-)  ~+ 2~-j-j 5 2 + Ov - v jO 
v 

x ~ + f2v -- v j'O (24) 

when inserted in Eq. (21), the new radial functions FJ ff form a finite dimensional 
vector F N, which tends to F as its dimension increases with N. In the language 
of Ref. [ 1], this is a finite basis representation. A discrete variable representation 
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Fig. 2a, h. The left and right panels show the distribution of nonzero elements of the total interaction 
matrix in the [iQ> (case ~) and ]vO> (case ~) representations respectively. The elements of the 
interaction potential matrix are indicated by squares. Circles and black squares correspond to the 
elements of the centrifugal (l 2) and rotational (i2) matrices, respectively. The example illustrated in 
the figure is obtained for N = 4 and for blocks (2 = 0, 1, 2 

can be obtained by a similarity transformation with the orthogonal matrix whose 
elements are given in the r.h.s, of  Eq. (20). This leads to insert in Eq. (21): 

F~s~ N=~(  ) Ov j0 
J 22 + --v 

= Z t"~'~N~ pJN ~ j  ~'2 (25) V vj x j ~  , ~ <~ N + 
J 

for the radial functions: 

<vf2 I Bj 2 + h2 F v'O'> (26) 
2#R 2 

for the rotational and centrifugal matrices, and VN(R, Or) for the potential 
matrix. In Eq. (26), the matrix o f j  2 will be shown (Sect. 7 and Fig. 2) to be 
tridiagonal, connecting states with v ' =  v - 1, v, v + 1, while the centrifugal (12) 
term now couples also state with different v. The interesting feature of this basis, 
where discretization is achieved by introducing artificial quantum numbers, is 
that the interaction potential appears diagonal assuming the values computed at 
the discrete set of  angles 0v. 

It is interesting to note that in this representation the Infinite Order Sudden 
approximation is obtained by neglecting off diagonal terms in [26], [4]. Actually, 
the whole procedure is very much reminiscent of the transition from Hund's cases 
(c) to (a) in the treatment of atoms carrying internal angular momenta and 
interacting to form a diatomic molecule [7]. In order to further exploit this analogy, 
we suggested [3, 4] indicating by Greek letters the corresponding cases in the 
rotation excitation problem of  diatomic molecules, so that representations of Eqs. 
(21) and (23) can be denoted as case (7), being a helicity representation in the sense 
of Jacob and Wick [6], and the discrete variable one as case (~): the corresponding 
space-fixed (e) case is the standard Arthurs and Dalgarno formulation [17]. 
Representations corresponding to case (6) can also be traced in the literature 
[8, 19]. They are all sources of  useful decoupling approximations, and the 
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same can be anticipated for the discrete basis representation introduced in this 
paper [4]. 

6. Recoupling of matrix elements 

As an indication of alternative routes to essentially the same results, we note that 
it is possible to work directly on matrix elements [20], rather than discretizing the 
harmonics of the basis. When we know a discretized expansion for the interac- 
tion potential as exemplified in Sect. 4, then the recoupling schemes of angular 
momentum algebra may assist us in the manipulation of otherwise formidable 
algebraic sums. Thus, when in Eq. (24) one uses the potential expansion of Eq. 
(14), the integral can be performed analytically to give a sum of products of 
vector coupling coeffÉcients [17]: 

o a  l vlj'~> =~ v,(R)[(2j + 1)/(2j' + 1)]l/2(jlg2OlfO)(flOOIfO) (27) 1 
Consider now the following relationships [18] valid as N/2 goes to infinity faster 
than j, j ' ,  and h 

(jZOOlj,O)~_[(2j + l)(aj, + l)ll/2(_)j_,_u ~ j l j' [N/2 N/2 N/2J (28) 

Inserted in Eq. (27), this gives, with the aid of the expansion: 

(jlf20,j,f2){ j l j' } N/2 N/2 N/2 = ~a ( -)~+J+Y[(2j + 1)(2/+ 1)1-1/2 

NN NN 

an expression for the matrix elements which can be checked to be equivalent to 
introducing Eq. (19) into Eq. (24). 

The above examples show that the systematic introduction of artificial 
quantum numbers through the discrete analogs of spherical harmonics leads to 
matrix elements involving vector coupling and recoupling coefficients that can be 
manipulated to give new discrete variable representations. Their use provides 
alternative coupling schemes which may be of interest in many situations, in view 
of the fact that they may be easily transformed one from another through well 
defined orthogonal transformations. Finally, this procedure appears to be very 
promising with respect to possible extensions to cases of higher dimensionality, 
such as the three-body rearrangement problem in the hyperspherical formulation 
of chemical reactions [21]. These extensions require the explicit construction of 
the analogs of hyperspherical harmonics, and are considered in Sect. 8. 

7. Structure of the interaction matrix 

In the previous sections we have resumed the quantum mechanics of the 
scattering of an atom from a rigid rotor in a body-fixed frame at a given total 
angular momentum J and parity e [4]. In particular, we have discussed the case 
7, in which j and ~2 are the quantum numbers that label the representation. This 
case has been discussed explicitly by Walker and Light [22] and Launay [23]. We 
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recall (see Sect. 5 and Fig. 2) that in this diabatic representation the matrix 
associated with the rotational operator ]2 is diagonal, the matrix of the centri- 
fugal operator 12 is tridiagonal in O and the matrix of the interaction potential 
is block diagonal, in each block channels labeled by the same O and different j 
being coupled. In Fig. 2 we illustrate the structure of the total interaction matrix 
W -r'~, Eq. (22) in this case ~,, or IjO) basis. The same structure of course applies 
in its discretized counterpart, which we denote W uJ,~. 

We are interested in alternative representations for which the interaction 
potential matrix is diagonal (case c~ and fl). In the following we describe the 
procedure to evaluate the total interaction matrix W N,J'~ in case ~, which can be 
indicated as pro) (case fl, the representation lay),  is obtained by consistently 
interchanging j and l and O and A [4]). The two alternative diabatic representa- 
tions are connected by an orthogonal transformation GNt~: 

W N'J'e - -  ( ~ r N " Q w J ' ~ N O  (30) - - - -  - - y  - -  

whose elements G Na are as in Eq. (25). Note that the matrix Car No is orthogonal 
with respect to all values o f j  and O allowed by the existence of vector coupling 
coefficients, and does not depend on the parity quantum number e = + 1. Parity 
leads to block diagonalization [22, 23] of the whole problem in two sets, which 
differ in the allowed range of O, which spans the allowed positive integers, 
including 0 for e = ___ 1 and starting from 1 for ~ = - 1 .  

For a given total angular momentum J we fix N, where N + 1 specifies the 
number of points of the potential which have been selected. In order to have the 
matrix G Na orthogonal with respect to j and v (the projection of N/2) all the 
values o f j  - O varying between 0 and N have to be taken, e.g. when O = 0 then 
0-%<j~<N, w h e n O = l  then 1,%<j~<N+l,  a n d s o  on. 

In the application to homonuclear molecules, as in Ref. [4], only even or odd 
j states are allowed. Correspondingly, there is a symmetry in the potential, 
V(cos 00 = V(cos 0_v). The G m matrix elements are conveniently written: 

NO 1/2 N / 2 - v + / N N  G}~ =[2(1+6~0) -1] ( - )  J ~ 5 ~ + O v - v  j O /  (31) 

where N here is assumed even, and v now covers the positive range, including 0 
for the case when even j ' s  are allowed, and starting from 1 when odd j ' s  are 
allowed. 

In general, the matrix G Na is block diagonal, there are as many blocks as the 
values of O which are allowed, and each block is (N + 1)(N + 1) dimensional. 
The rows are labelled by j and the columns by v. The elements of this matrix are 
Clebsch-Gordan coefficients as stated in the previous section. The G Na matrix 
diagonalizes the matrix of the interaction potential, whose elements in the 
discrete representation are the values of the potential at Ov. The matrix elements 
of the operator j 2 in the basis IjO) are: 

(j~~ Ij 2 ]j~'~ ) = j ( j  + 1) (32) 

In the discrete ]vO) representation (case ~) this diagonal matrix becomes 
tridiagonal and channels IvO) and Iv'O) are now coupled, the only nonzero 
elements being: 

(vO Ij2[v'O) = (N + O)(O + 1) + 2(N/2 - v)(N/2 + v) for v' = v 

= {(N/2 + v)(N/2 + 1 -T- v)[(N + 1)O + O 2] 

+ (N/2 +_ v)Z(N/2 + 1 -T- v)2} '/2 for v' = v _ 1 (33) 
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The matrix elements of the operator/2 in the [f12) basis are [23]: 

( . jOl l  2 Ijo'> -- J ( J  + 1) - 20 2 + j ( j  + 1) for ~ '  = Q 

= - {[J(J + 1) - fl(Q ± 1)1 

x [ j ( j  + 1) -- f2(f2 __ 1)]} 1/2 for f2' = I2 ___ 1 (34) 

In the basis [vf2) they are transformed according to the following formulas: 

<vf~ [12Iv'o) = d(J  + 1) -- 2122 + (N + ~2)(f2 + 1) 

+ 2(N/2 - v)(N/2 + v) for v' = v 

= ( (N/2  ± v)(N/2 + 1 -T- v)[(m + 1)f2 + (22] 

+ (N/2  ± v)2(X/2 + 1 -T- v)2} 1/2 for v' -- v + 1 (35) 

s - a  / N N  f2' / N N  , , <v~?l/21v'f2'>=j~ ~+~2v-v jo)(Jf2112j >~+rzv-v' jo) (36) 
where (2' = f2 + 1. In Fig. 2 we illustrate the structure of the total interaction 
matrix in this discrete representation. 

8. Extension and implementations of the algorithm to reactive collisions 

The matrix representations for the j2 and ! 2 operators obtained in the previous 
section show that the kinetic energy operator in this approach reduces to a 
matrix whose structure is extremely sparse and whose elements are expressible 
either explicitly or as simple sums, independent of the system under consider- 
ation. Both features are important when numerical implementation of the 
algorithm is considered. Besides obvious simplifications in programming and 
storing, the structure suggests that advantages m a y b e  achieved in parallel 
performing of operations regarding different energies, angular momenta, interac- 
tions. 

The diagonal structure of the interaction potential avoids a common compu- 
tational bottleneck, i.e. the integration procedures needed to generate matrix 
elements in conventional approaches. Furthermore, in problems where the 
interaction is strongly localized in configuration space, the present algorithm 
shows the advantage (common to finite difference schemes) of natural truncations 
of the basis. 

Extensions to reactive collisions is natural in the hyperspherical formalism, 
where the procedure leads to an orthonormal basis for the expansion of the 
three-body wavefunctions at fixed values of the hyperradius: its utility is sought 
for the calculation of adiabatic eigenvalues and nonadiabatic coupling. In our 
formalism we exploit the fact that a finite set of Hahn polynomials is the discrete 
analog of an infinite set of Jacob± polynomials [24]. Since hyperspherical 
harmonics are related to the latter [2], Hahn polynomials are used to build up 
the discrete analogs of the harmonics themselves. It turns out that the Hahn 
polynomials coincide up to normalization and weight with 3j symbols general- 
ized [25] to any angular momentum, and consequently they enjoy the properties 
of the vector coupling coefficients (orthogonality, dual orthogonality, recurrence 
relation, difference equation). 
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A hyperquantization algorithm is developed [26], within the framework of 
this hyperangular momentum algebra, introducing an artificial vector which 
divides the space into boxes and whose projections select the lattice points. These 
orthogonal discrete basis sets are also of interest for finding useful decoupling 
schemes for the three-body dynamical problem. These schemes involve the full or 
partial conservation of  quantum numbers corresponding to angular momenta, 
their projections and their generalizations on the hypersphere. Orthogonal 
transformations among representations appropriate between the various reaction 
channels and intermediate states of  the reaction have been worked out and can 
be exploited both for simplifying complete calculations and for the qualitative 
description of  the rearrangements process. 

The possibility of  alternative grids, for example exploiting a quadratic grid 
allowed by the dual Hahn polynomials and also the various choices of hyper- 
spherical coordinates [2, 15, 21] are being explored. 

9. Concluding remarks 

In conclusion, the simple structure of  the algorithm here considered lends itself 
to take advantage of  any progress in storing and manipulating large matrices. 
Physically motivated approximations can be easily implemented in computation- 
ally advantageous form, since the procedure provides a transparent set of 
quantum numbers, some physical and some artificial:, so for example a coupled 
state scheme in the atom-diatom problem, corresponding to f2 conservation, 
leads to a tridiagonal representation, seen in Fig. 2 by deleting the off-diagonal 
12 matrix elements, see also Ref. [4]. Finally it is noted that nonphysical quantum 
numbers, such as v in previous sections and Fig. 1, although can be merely 
viewed as labels of  lattice points, convey information on the role of spatial 
configurations of quantum mechanical systems. They label molecular orienta- 
tions. Some indications of the insight that these representations imply for 
atom-molecule van der Waals complexes emerged in a previous study [4]: further 
work is in progress to exploit these labels of molecular orientations for inelastic 
and reactive collisions. 
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